BT

			//		
Reg.No.:					

VIVEKANANDHA COLLEGE OF ENGINEERING FOR WOMEN

[AUTONOMOUS INSTITUTION AFFILIATED TO ANNA UNIVERSITY, CHENNAI] Elayampalayam $-637\ 205$, Tiruchengode, Namakkal Dt., Tamil Nadu.

Question Paper Code: 9003

B.E. / B.Tech. DEGREE END-SEMESTER EXAMINATIONS - NOV. / DEC. 2023

Seventh Semester

Biotechnology

U19BT726 - PROTEOMICS AND GENOMICS

(Regulation 2019)

Time: Three Hours

Maximum: 100 Marks

Answer ALL the questions

Knowledge Levels	K1 – Remembering	K3 – Applying	K5 - Evaluating
(KL)	K2 – Understanding	K4 – Analyzing	K6 - Creating

PART-A

		$(10 \times 2 =$	20 Ma	ırks)
Q.No.	Questions	Marks	KL	CO
1.	Differentiate between the structural organization of the genomes of prokaryotes and eukaryotes.	2	K2	CO1
2.	What are the web resources available to access and retrieve information on the genome project?	2	K1	CO1
3.	Distinguish between Physical mapping and genetic mapping.	2	K2	CO2
4.	What are ESTs & SNPs? How are they used in genome analysis?	2	K2	CO2
5.	State the principle of Yeast two hybrid system.	2	K1	CO3
6.	How is the N-terminus of a protein sequenced?	2	K2	CO3
7.	What are the challenges and limitations of high throughput screening in genome for drug discovery?	2	K4	CO4
8.	What makes personalized medicine unique from traditional medicine?	2	K4	CO4
9.	How is the analysis and normalization of microarray data done?	2	K2	CO5
10.	How does protein and peptide microarray-based technology work?	2	K2	CO5

PART – B

		$\mathbf{I}\mathbf{A}\mathbf{K}\mathbf{I} - \mathbf{B}$				
			•	13 = 65 I		_
-	No.	Questions	Mark			CO
11.	a)	Describe the fundamentals of DNA sequencing and how they	13	K2		CO1
		have been applied to large scale projects like Human				
		Genome Project.				
		(OR)				
	b)	How are noncoding and coding sequences recognized in a	13	K2		CO1
		genome and what are the methods used for gene annotation?				
12.	a)	Using 16s rRNA sequencing, how can you identify and	13	K4		CO2
12.	a)	classify a microbe?	13	174		COZ
		(OR)				
	b)	Classify the tools used for genome analysis and explain how	13	К3		CO2
		they can be used.		14		
					÷	
13.	a)	Interpret how differential display proteomics differ from	13	K4		CO3
		other proteomic techniques, and elaborate it.				
		(OR)				
	b)	How does LC/MS-MS help in the identification of proteins	13	K2		CO3
		and modified proteins?				
14.	a)	Describe the steps involved in drug development, with a neat	13	K2		CO4
	,	flow sheet.	10			00.
		(OR)				
	b)	Narrate the role of pharmacogenetics in personalized	13	K2		CO4
		medicine.				
1.5	,	XXII		***		G0.5
15.	a)	What are transcriptomics and metabolomics? How they are	13	K2		CO5
		used in biological research?				
		(OR)				
	b)	What is structural proteomics? What are the techniques used	13	K2		CO3
		in this field?				
		PART – C				
			(1 x 15	5 = 15 Ma	ırks)	
Q.N	Vo.	Questions		Marks	KĹ	CO
16.	a)	SAGE – Analyze its role in proteomics and discuss in detail.		15	K5	CO5
		(OR)				
	b)	Predict the significance of structural biology in understanding	g the	15	K5	CO3
		complex biological systems.				

Reg.No.:					
----------	--	--	--	--	--

[AUTONOMOUS INSTITUTION AFFILIATED TO ANNA UNIVERSITY, CHENNAI] Elayampalayam – 637 205, Tiruchengode, Namakkal Dt., Tamil Nadu.

Question Paper Code: 9004

B.E. / B.Tech. DEGREE END-SEMESTER EXAMINATIONS - NOV. / DEC. 2023

Seventh Semester

Biotechnology

U19BT727 – BIOPHARMACEUTICAL TECHNOLOGY

(Regulation 2019)

Time: Three Hours

Maximum: 100 Marks

Answer ALL the questions

Knowledge Levels	K1 – Remembering	K3 – Applying	K5 - Evaluating
(KL)	K2 – Understanding	K4 – Analyzing	K6 - Creating

PART - A

		$(10 \times 2 = 20 \text{ Marks})$			
Q.No.	Questions	Marks	KL	СО	
1.	What determines the route of drug administration?	2	K2	CO1	
2.	Indicate the physiological properties of drug molecules.	2	K2	CO1	
3.	State the importance of animals in drug discovery.	2	K2	CO2	
4.	List the main objectives of Drugs and Cosmetics Act.	2	K1	CO2	
5.	What is bioavailability of Drug?	2	K1	CO3	
6.	Define the term 'Bioequivalence'.	2	K1	CO3	
7.	Infer the advantages of transdermal drug delivery.	2	K2	CO4	
8.	Mention the challenges to the oral delivery of nucleic acids.	2	K2	CO4	
9.	Who discovered COVAXIN?	2	K1	CO5	
10.	Quote the mechanism of action of antitumor drugs.	2	K2	CO5	

PART – B

		PARI – B			
		(5 x	13 = 65	Marks)
Q.N	Vo.	Questions	Marks	KL	CO
11.	a)	Define 'Drug Targets' from a pharmacological viewpoint and list	4+9	K2	CO1
		different targets for drug action.			
		(OR)			
	b)	What are the challenges in drug classification and how they are	5+8	K2	CO1
		classified?			
12.	a)	Discuss the different steps in clinical trial phases of drug	13	K2	CO2
12.	a)	development.	13	142	002
		(OR)			
	b)		13	K4	CO2
		challenges.			
13.	a)	Summarize the factors that significantly affect biotransformation.	13	K2	CO3
15.	a)		15	182	COS
		(OR)	10	***	
	b)	Discuss on the factors that can influence the way a drug is absorbed,	13	K2	CO3
		distributed, metabolized, and eliminated from the body.			
14.	a)	Narrate the steps involved in manufacturing of capsules, with a neat	13	K2	CO4
		flow sheet.			
		(OR)			
	b)	What is an ointment? Discuss its production process.	4+9	K2	CO4
15.	a)	List the important attributes of an ideal drug preservative and	13	K2	CO5
)	explain in detail.			
		(OR)			
	b)	Exemplify the modes of action of;	4+9	K2	CO5
		i. Laxatives.			
		ii. Analgesics and Antibiotics.			
		PART – C	15 — 15	Moulea	\
Q.1	No	· ·	15 = 15 Marks	Marks KL) CO =
16.			10+5	K2	CO4
10.	a)	explain each. Add their advantages and disadvantages.	1013	IX2	COT
		(OR)			
	b)	With an example case study, discuss the importance of	15	K5	CO5
	0)	pharmaceuticals in Gene therapy.	10	120	

Reg.No.:			
----------	--	--	--

[AUTONOMOUS INSTITUTION AFFILIATED TO ANNA UNIVERSITY, CHENNAI] Elayampalayam $-637\ 205$, Tiruchengode, Namakkal Dt., Tamil Nadu.

Question Paper Code: 9008

B.E. / B.Tech. DEGREE END-SEMESTER EXAMINATIONS - NOV. / DEC. 2023

Fifth Semester

Biotechnology

U19BT514 - PRINCIPLES OF GENETIC ENGINEERING

(Regulation 2019)

Time: 3 Hours

Maximum: 100 Marks

Answer ALL the questions

Knowledge Levels	K1 – Remembering K3 – Applying		K5 - Evaluating
(KL)	K2 – Understanding	K4 – Analyzing	K6 - Creating

PART - A

		$(10 \times 2 =$	20 Mai	rks)
Q.No.	Questions	Marks	KL	CO
1.	Write any three characteristics of cloning vectors.	2	K2	CO1
2.	List the major difference between YACs and BACs.	2 -	K2	CO1
3.	List out the names of enzymes necessary for the construction of recombinant DNA molecules.	2	K1	CO2
4.	Show the Luciferace enzyme reaction for the selection.	2	K3	CO2
5.	What is alpha-complementation?	2	K1	CO3
6.	What is a cDNA library?	2	K1	CO3
7.	State the importance of labeling DNA and RNA probes.	2	K4	CO4
8.	Define RNA interference (RNAi).	2	K1	CO4
9.	What are gene editing tools? Give a few examples.	2	K2	CO5
10.	Write any four applications of genetically modified organisms (GMOs).	2	K2	CO5

PART - B

Q.No. Questions (5 x 13 = 65 Marks)

Q.No. Questions Marks KL CO

11. a) Compare and contrast different types of cloning vectors in terms of their structure and applications.

(OR)

	b)	How do reporter genes and selectable markers aid in the selection and evaluation of transformed plants?	13	K3	CO1
12.	a)	Describe the process by which recombinant DNA is transferred into host organisms using calcium chloride. What kinds of organisms is this technique appropriate for? (OR)	13	K3	CO2
ė	b)	Describe the concept of recombinant selection based on antibiotic resistance. What does blue-white screening entail and why is it important?	13	K3	CO2
13.	a)	Explain the principle of purification using a Ni+ column, including the binding and elution steps. (OR)	13	K3	CO3
	b)	How are cDNA and genomic libraries screened to identify specific DNA sequences of interest?	13	K3	CO3
14.	a)	What is PCR? Write the principle and steps of PCR. (OR)	13	K2	CO4
	b)	Explain Chemical-Degradation and chain termination methods of sequencing.	13	K4	CO4
15.	a)	Differentiate between BSL-1, BSL-2, and BSL-3 containment facilities. List some of the research works carried out using these facilities.	13	K5	CO5
		(OR)			
	b) =	Explain the concept of transgenic BT cotton and its benefits in agriculture.	13	K5	CO5
		PART – C			
		· ·	x 15 = 15)
Q.No		Questions	Marks	KL	CO
16.	a)	Briefly describe the DNA replication in eukaryotes with emphasis on its enzymology. Add a note on the replication of telomeric DNA.	15	K2	CO3
		(OR)			
	b)	Describe the principles and applications of gene editing tools, including CRISPR-Cas9 and the Zinc Finger technique. How have these tools transformed genetic engineering and medical research?	15	K5	CO5

-						-	= = = =
Reg.No.:							
iteg.ivo						- 0	

[AUTONOMOUS INSTITUTION AFFILIATED TO ANNA UNIVERSITY, CHENNAI] Elayampalayam – 637 205, Tiruchengode, Namakkal Dt., Tamil Nadu.

Question Paper Code: 9017

B.E. / B.Tech. DEGREE END-SEMESTER EXAMINATIONS - NOV. / DEC. 2023

Fifth Semester

Biotechnology

U19BTV45 - CONFECTIONERY PRODUCTS

(Regulation 2019)

Time: Three Hours

Maximum: 100 Marks

Answer ALL the questions

Knowledge Levels	K1 – Remembering	K3 – Applying	K5 - Evaluating
(KL)	K2 – Understanding	K4 – Analyzing	K6 - Creating

PART - A

		$(10 \times 2 =$	20 Ma	rks)
Q.No.	Questions	Marks	KL	CO
1.	How does water activity play an important role in the shelf life of bakery products?	2	K2	CO1
2.	Name two emulsifiers used in bread making.	2	K1	CO1
3.	List any four utensils and equipment used in the bakery industry with their purpose.	2	K1	CO2
4.	What is proofing?	2	K2	CO2
5.	Cite the causes of improper shapes of breads.	2	K2	CO3
6.	Mention the internal characteristics of good bread.	2	K1	CO3
7.	Write the importance of wafer maturing.	2	K1	CO4
8.	Differentiate developed dough from short doughs.	2	K2	CO4
9.	Define hydrocolloids.	2	K1	CO5
10.	What is intense sweeteners? Give one example.	2	K2	CO5
	PART – B			
		$(5 \times 13 =$	65 Ma	ırks)
Q.No.	Questions	Marks	KL	CO
11. a)	i. Mention the composition of wheat flour. Explain the function of each in bakery products.	8	K1	CO1
	ii. Classify bakery products and write short notes about each.	5		

		(OR)			
	b)	Write short note on: i. Shortening	13	K1	CO ₁
		ii. Leaveners			
12.	a)	Discuss the working principle of Batch and continuous mode of dough mixers.	13	K2	CO2
		(OR)			
	b)	Write a short note on the following i. Dough dividers ii. Slicers	13	K1	CO2
13.	a)	 Write the principle behind the development of bread dough. 	9	K2	CO3
		ii. What are the procedures in no time dough process?	4		
		(OR)			
	b)	Explain the causes of Bread spoilage.	13	K2	CO3
14.	a)	Describe in detail the reason behind the ingredients used in cake making.	13	K3	CO4
		(OR)			
	b)	Elaborate the formation of puff pastry.	13	K2	CO4
15.	a)	i. What is recrystallization? What effect does it cause in confectionary and how it can be prevented?	9	K1	CO5
		ii. Write a short note on fondant.	4		
	b)	(OR) Give a detailed account on the optimization of sugar-boiled confectionary.	13	K1	CO5
		PART – C			
		171101	(1 x 15 =	= 15 N	(Jarks
Q.N	lo.	Questions	Marks		CO
16.	a)	How the deformation and flow behavior of dough was measured? Explain. (OR)	15	K4	CO3
	b)	In detail, compare and contrast the bulk fermentation bread- making from Chorley wood and the activated dough development process.	15	K4	CO4

|--|

[AUTONOMOUS INSTITUTION AFFILIATED TO ANNA UNIVERSITY, CHENNAI] Elayampalayam $-637\ 205$, Tiruchengode, Namakkal Dt., Tamil Nadu.

Question Paper Code: 9018

B.E. / B.Tech. DEGREE END-SEMESTER EXAMINATIONS - NOV. / DEC. 2023

Fourth Semester

Biotechnology

${\tt U19BT407-BIOPROCESS\ ENGINEERING\ \&\ TECHNOLOGY}$

(Regulation 2019)

Time: Three Hours

Maximum: 100 Marks

Answer ALL the questions

			•	
	Knowledge Levels	K1 – Remembering	K3 – Applying	K5 - Evaluating
ı	(KL)	K2 – Understanding	K4 – Analyzing	K6 - Creating

PART - A

		$10 \times 2 =$	20 M	arks)
Q.No.	Questions	Marks	KL	CO
1.	What is the role of chelator in media and give examples?	2	K1	CO1
2.	Discuss the effect of impeller speed with respect to oxygen delivery system in a stirred tank reactor.	2	K2	CO1
3.	Write shortly on Richard's rapid method for the design of sterilization cycles.	2	K2	CO2
4.	List the equipments used for sterilization.	2	K1	CO2
5.	What are the different types of Non-Newtonian fluids. Give examples.	2	K1	CO3
6.	Write shortly on Impeller Viscometer.	2	K1	CO3
7.	Give the mathematical expression of monod equation.	2	K2	CO4
8.	Define plasmid.	2	K1	CO4
9.	List out few examples of Industrial utilization of mixed cultures.	2	K1	CO5
10.	Define Damkohler Number.	2	K1	CO5

PART - B

Q.No. Questions $(5 \times 13 = 65 \text{ Marks})$ Q.No. Questions $(5 \times 13 = 65 \text{ Marks})$ Marks $(5 \times 13 = 65 \text{ Marks})$ 11. a) Discuss the basic designs involved in the construction of a fermenter. $(6 \times 13 = 65 \text{ Marks})$ $(7 \times 13 = 65 \text{ Marks})$ $(7 \times 13 = 65 \text{ Marks})$ $(7 \times$

b) Using Plackett-Burman method solve the below table. Assume 13 K3 CO1 variable D is dummy.

Trial	A	В	C	D	E	F	G	Yield
1	H	H	H	L	H	L	L	2.5
2								3.6
3								2.1
4								8.0
5								5.0
6								9.0
7								1.1
8								4.1

12. a) It is required to provide a 20 m³ min⁻¹ fermenter with air at a rate of 10 m for a fermentation lasting 100 hours. From an investigation of the filter material to be used, the optimum linear air velocity was shown to be 0.15 m sec⁻¹, at which the value of *k* was 1.535 cm⁻¹ follows: The dimensions of the filter may be calculated as. The log penetration relationship states that:

 $\ln (N / N_0) = -k_X.$

The air in the fermentation plant contained approximately 200 microorganisms m⁻³.

(OR)

b) Illustrate the design of continuous sterilization process.

13 K3 CO2

13

K3

CO₂

13. a) List the factors that affect k_La in fermentation vessels. Explain in detail the gassing out method of k_La determination.

13 K2 CO3

(OR)

b) Elaborate the scaling up of bioreactors.

13 K4 CO3

14. a) For a Chemostat with recycle stream with as the recycle ratio and C as the concentration factor prove that:

13 K3 CO4

 $\frac{K_s \mu_g}{\mu_m - \mu_g}$ (OR)

b) In a fed-batch culture operating with intermittent addition of glucose solution, values of the following parameters are given at time t=2 h, when the system is at quasi-steady state. V = 1000 ml, S₀ = 100 g glucose/l, K_s = 0.1 g glucose/l, X₀^t = 30 g, F = 200 ml/h, μ_m = 0.3 h⁻¹, Y^M_{X/S} = 0.5 g dw cells/ g glucose

K3 CO4

i. Find V₀(The Initial volume of the culture), and determine the dilution factor and the concentration of growth limiting substrate in the vessel at quasi-steady state.

9

4

ii. Determine the concentration and total amount of biomass in the vessel.

15. a) Elaborate the diffusional limitations in Immobilized cell.

13 K2 CO5

(OR)

b) Explain varies methods of cell immobilization.

13 K2 CO5

PART – C

	(1×15)	$= 15 \mathrm{Mag}$	arks)		
Q.No.	Questions	Marks	KL	CO	
16. a)	Aerobic growth of <i>S. cerevisiae</i> on ethanol is simply described by the following overall reaction: $C_2H_5OH + aO_2 + bNH_3 \longrightarrow cCH_{1.704} N_{0.149} O_{0.408} + dCO_2 + eH_2O$ i. Determine the coefficients a, b, c, d and e, where $RQ = 0.66$. ii. Determine the degree of reduction for substrate and biomass.	10 5	K3	CO1	
b)	$(OR) \label{eq:coli} E.coli \ \ is cultivated in continuous culture under aerobic conditions with a glucose limitation. When the system is operated at D = 0.2h^-l, determine the effluent glucose and biomass concentrations by using the following equations (So = 5 g/l): i. \text{Monod equation: } \mu_m = 0.25 \ h^{-l}, \ K_s = 100 \ mg/l. \\ ii. \text{Contois equation: } \mu_m = 0.25 \ h^{-l}, \ K_{sx} = 0.005, \ Y_{X/S} = 0.4 \ g \ of biomass/g \ of substrate. $	5 10	K3	CO4	

			-	
Reg.No.:				

[AUTONOMOUS INSTITUTION AFFILIATED TO ANNA UNIVERSITY, CHENNAI] Elayampalayam — 637 205, Tiruchengode, Namakkal Dt., Tamil Nadu.

Question Paper Code: 9001

B.E. / B.Tech. DEGREE END-SEMESTER EXAMINATIONS - NOV. / DEC. 2023

Fifth Semester

Biotechnology

U19BT513 – COMPUTATIONAL BIOLOGY

(Regulation 2019)

Time: Three Hours

Maximum: 100 Marks

Answer ALL the questions

Knowledge Levels	K1 – Remembering	K3 – Applying	K5 - Evaluating
(KL)	K2 – Understanding	K4 – Analyzing	K6 - Creating

PART - A

		(10×2)	= 20 N	(larks
Q.No.	Questions	Marks	KL	CO
1.	What is Bioinformatics and define its importance in biology?	2	K2	CO1
2.	What is the difference between BLAST and FASTA?	2	K2	CO1
3.	What are hidden Markov models?	2	K2	CO2
4.	What are the applications of Artificial Neural Networks?	2	K1	CO2
5.	Define Phylogeny and its applications.	2	K1	CO3
6.	What is an Ultrameric Phylogenetic Tree?	2	K1	CO3
7.	What is a Ramachandran Plot?	2	K1	CO4
8.	What is the SWISS-MODEL theory?		K1	CO4
9.	What is RMSD and RMSF molecular dynamics?	2	K2	CO5
10.	What is a DNA microarray?	2	K1	CO5
	PART - B			
		(5×13)		
Q.No.	Questions	Marks	KL	CO
11. a)	Emphasize on different biological databases and their applications. (OR)	7+6	K2	CO1
b)	Define sequence alignment and discuss on different algorithms, types, methods, and applications.	5+8	K2	CO1

12.	a)	Write a detailed note on the applications of Machine Learning in Bioinformatics.	13	K2	CO ₂
		(OR)			
	b)	Write a note on a) Clustering and Prediction b) DNA computing.	7+6	K2	CO2
13.	a)	Describe in detail the various methods of constructing phylogenetic trees. (OR)	13	K4	CO3
	b)	What is molecular phylogenetics? Write a detailed note on its importance in evolutionary biology.	8+5	K4	CO3
14.	a)	Write a detailed note on novel protein structure prediction tools and analysis.	13	K3	CO4
		(OR)			
	b)	Write a note on the classification of protein structures with examples.	13	K3	CO4
15.	a)	Write a note on Next Generation Sequencing and highlight its applications. (OR)	13	K2	CO5
	b)	Write a note on Molecular docking and Dynamic simulations by taking any one protein as an example.	13	K2	CO5
		DART C			
		PART – C	x 15 = 1	5 Marl	re)
Q.N	No.	Questions	Marks	KL	CO
-	a)	Write in detail the importance and applications of Genomics and Proteomics in disease biology. (OR)	15	K3	CO5
	b)	Discuss about tools available for structure visualization and its application.	15	K3	CO4

Reg.No.:			

VIVEKANANDHA COLLEGE OF ENGINEERING FOR WOMEN [AUTONOMOUS INSTITUTION AFFILIATED TO ANNA UNIVERSITY, CHENNAI] Elayampalayam – 637 205, Tiruchengode, Namakkal Dt., Tamil Nadu.

Question Paper Code: 9019

B.E. / B.Tech. DEGREE END-SEMESTER EXAMINATIONS - NOV. / DEC. 2023

Fourth Semester

Biotechnology

U19BT408 – THERMODYNAMICS FOR BIOTECHNOLOGISTS

(Regulation 2019)

Time: Three Hours

Maximum: 100 Marks

Answer ALL the questions

Knowledge Levels	K1 – Remembering	K3 – Applying	K5 - Evaluating
(KL)	K2 – Understanding	K4 – Analyzing	K6 - Creating

PART - A

		$(10 \times 2 = 20 \text{ M})$	(arks	
Q.No.	Questions	Marks	KL	CO
1.	Define first law of thermodynamics.	2	K1	CO1
2.	Write the application of second law of thermodynamics.	2	K2	CO1
3.	Define chemical potential. What is its physical significance?	2	K1	CO2
4.	State Raoult's Law.	2	K2	CO2
5.	How is the Hess's law of constant heat summation useful thermochemical calculation?	in 2	K2	CO3
6.	Define standard heat of formation.	2	K1	CO3
7	Write the application of Carnot cycle.	2	K2	CO4
8.	Define Helmholtz free energy.	2	K1	CO4
9.	Differentiate aerobic and anerobic metabolism.	2	K1	CO5
10.	What are the four types of protein interaction?	2	K2	CO5

PART - B

		(5	x 13 = 6	55 Ma	ırks)
Q.No.		Questions	Marks	KL	CO
11. a.	i.	A spherical manometer fluid has a specific gravity of 2.95 and is used to measure a pressure of 1.15 bar at a location where the barometric pressure is 760 mm Hg. What height	8	K3	CO1
	ii.	will the manometer fluid indicate? Write the role of higher energy compounds in metabolism.	5	K1	CO1
		(OR)			

b. How do you state mathematically the first law of thermodynamics 13 K2 CO1 that can be used for solving steady state fluid flow process? Discuss the Gibbs duhem equation and its various forms. What are 13 K2 CO2 the major fields of application of the Gibbs duhem equation? b. At 300 K and 1 bar the volumetric data for a liquid mixture of 13 K3 CO2 Cyclohexane represented benzene and are $V = 109.4 \times 10^{-6} - 16.8 \times 10^{-6} - 2.64 \times 10^{-6} x^2$, where x is the mole fraction of benzene and V has the units of m^3/mol . Find expressions for the partial molar volumes of benzene and Cyclohexane. 13. a. Calculate the heat of formation of methane gas from the following 13 K4 CO3 heat combustion data: 1) CH₄ (g) + 2O₂ \rightarrow CO₂(g) + 2H₂O(l); Δ H₂₉₈° = -890.94kJ 2) C (s) + O₂ (g) \rightarrow CO₂(g); Δ H°₂₉₈ = -393.78 kJ 3) $H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2O(1)$; $\Delta H^0_{298} = -298.03 \text{kJ}$ (OR) How is standard heat of reaction evaluated using 13 K2 CO3 1. The standard heat of formation and 2. The standard heat of combustion of the various components. What are maxwell equation and what is their importance in 13 K3 CO4 establishing relationships between thermodynamics properties? (OR) b. i. Derive the expression for Enthalpy and Entropy changes in 7 K2 CO4 ideal gases. Differentiate between reference properties, CO4 ii. 6 properties and derived properties. What is NADH and ATP? How it helps in energy producing K2 CO5 13 process? Explain. (OR) b. How do you determine the oxygen requirement and heat generation 13 K2 CO5 in aerobic growth? Discuss in detail.

PART – C

	TIME C			
	(1	x 15 = 15	Marks)
Q. No	Questions	Marks	KL	CO
16. a)	Chemical potential can be equated do the partial derivatives of U,	15	K3	CO3
	A, H or S under certain constraints. However, it cannot be treated			
	as the partial molar internal energy, partial molar enthalpy etc.			
	Explain.			
	(OR)			
b)	Estimate the standard free energy change and equilibrium constant	15	K4	CO2
	at 700 K for the reaction			
	$N_2(g) + 3H_2(g) - 2NH_3(g)$			
	Given that the standard heat of formation and standard free energy			
	of formation of ammonia at 298 K to be – 46100 J/mol and -16,500			
	J/mol respectively. The specific heat (J/mol K) data are given			
	below as function of temperature (K)			
	$C_p = 27.27 + 4.93 \times 10^{-3} \text{ T for } N_2$			
	$C_p = 27.01 + 3.51 \times 10^{-3} \text{T for H}_2$			
	$C_p = 29.75 + 25.11 \times 10^{-3} \text{ T for NH}_3$			

Reg.No.:												
----------	--	--	--	--	--	--	--	--	--	--	--	--

[AUTONOMOUS INSTITUTION AFFILIATED TO ANNA UNIVERSITY, CHENNAI] Elayampalayam $-637\ 205$, Tiruchengode, Namakkal Dt., Tamil Nadu.

Question Paper Code: 9020

B.E. / B.Tech. DEGREE END-SEMESTER EXAMINATIONS - NOV. / DEC. 2023

Fourth Semester

Biotechnology

U19BT410 - BIOINSTRUMENTATION

(Regulation 2019)

Time: Three Hours

Maximum: 100 Marks

Answer ALL the questions

Knowledge Levels	K1 – Remembering	K3 – Applying	K5 - Evaluating
(KL)	K2 – Understanding	K4 – Analyzing	K6 - Creating

PART – A

		$(10 \times 2 =$	20 M	(arks
Q.No.	Questions	Marks	KL	CO
1.	What is electromagnetic radiation? Give the radiation diagram with wavelength.	2	K1	CO1
2.	What do you mean by instrumental noise?	2	K1	CO1
3.	Define Beer's Law.	2	K1	CO2
4.	List out the merits and demerits of atomic absorption spectroscopy.	2	K2	CO2
5.	Differentiate NMR and X-Ray diffraction method.	2	K2	CO3
6.	What is chemical shift? State the factors involving in shift.	2	K1	CO3
7.	Name the carrier gases used in GC and find its characteristics.	2	K1	CO4
8.	List out the application of size exclusion chromatography.	2	K2	CO4
9.	How does the SEM work?	2	K1	CO5
10.	Define Amperometry.	2	K1	CO5

PART-B

		($5 \times 13 =$	65 Ma	arks)
S.N	lo.	Questions	Marks	KL	CO
11.	a)	Explain the terms: reflection, refraction, diffraction and scattering.	13	K2	CO1
	b)	(OR) Describe about the hardware and software techniques available for S/N ratio enhancement.	13	K2	CO1

12.	a)	Discuss the working principles, components and application of UV- Visible spectroscopy with neat sketch. (OR)	13	K2	CO2
	b)	Illustrate the working mechanism, components and application of AES.	13	K2	CO2
13.	a)	Explain in detail the theory of NMR. Comment on NMR spectra in general. (OR)	13	K2	CO3
	b)	How XRD are used to determine the crystal structure? Summarize the analysis.	13	K2	CO3
14.	a)	Deliberate the working principle and applications of HPLC with proper diagram. (OR)	13	K2	CO4
	b)	Discuss the principle and application of gel filtration chromatography. Explain how is it used for the determination of protein molecular weight.	13	K3	CO4
15.	a)	Define voltammetry. Write short notes on pulsed and cyclic voltammetry. (OR)	13	K1	CO5
	b)	Enumerate the details of working principle & application of AFM.	13	K2	CO5
		PART – C			
			x 15 =	15 Ma	arks)
Q.I	No.	Questions	Marks	KL	CO
16.	a)	Write a short notes on the following			
		i. Applications of ¹ H and ¹³ C NMR	7	K2	CO2
		ii. Thermo-gravimetric methods	8		
		(OR)			
	b)	Elucidate the theory, instrumentation and applications of differential scanning calorimetry with diagram.	15	K2	CO4

Reg.No.:				

[AUTONOMOUS INSTITUTION AFFILIATED TO ANNA UNIVERSITY, CHENNAI] Elayampalayam – 637 205, Tiruchengode, Namakkal Dt., Tamil Nadu.

Question Paper Code: 9001

B.E. / B.Tech. DEGREE END-SEMESTER EXAMINATIONS - NOV. / DEC. 2023

Seventh Semester

Biotechnology

U19BT725 – DOWNSTREAM PROCESSING

(Regulation 2019)

Time: Three Hours

Maximum: 100 Marks

 $(5 \times 13 = 65 \text{ Marks})$

Answer ALL the questions

Knowledge Levels	K1 – Remembering	K3 – Applying	K5 - Evaluating
(KL)	K2 – Understanding	K4 – Analyzing	K6 - Creating

PART - A

	*	$(10 \times 2 = 2)$	0 Mar	ks)
Q.No.	Questions	Marks	KL	CO
1.	What are the different stages in downstream processing?	2	K 1	CO1
2.	List the physio-mechanical methods of Cell disruption.	2	K1	CO1
3.	What are filter aids? Give some examples.	2	K2	CO2
4.	Which type of centrifuge is used to separate starch from gluten at cream from milk?	nd 2	K3	CO2
5.	Define partition coefficient (K) in extraction.	2	K2	CO3
6.	Differentiate between 'Salting in' and 'Salting out' of proteins.	2	K2	CO3
7.	Define the terms 'Retention time' & 'Retention volume' in chromatography.	2	K2	CO4
8.	Define the terms 'available capacity' & 'total ionic capacity' of ionic capacity' of ionic capacity' of ionic capacity' at a capacity' & 'total ionic capacity' of ionic capacity' of ionic capacity' at a capacity' at a capacity of ionic capacity' at a capacity of ionic capacity of ionic capacity' at a capacity of ionic capacity of ionic capacity.	on 2	K2	CO4
9.	Quote the industrial applications of dryers.	2	K1	CO5
10.	Write the different steps of crystallization process.	2	K2	CO5

PART - B

Q.No.	Questions	Marks	KL	CO
11. a)	Draw the generalized block diagram of downstream	13	K4	CO1
	processing of bioproducts and explain briefly the unit			
	operations involved in primary, intermediate and final			
	purification stages.			

	b)	(OR) Give a detailed note on the non-mechanical methods of cell disruption.	13	K2	CO1
12.	a)	With neat diagram, explain the working principle of rotary vacuum filters.	13	K2	CO2
	b)	(OR) Derive the relation to estimate the volumetric capacity of Tubular Bowl Centrifuge.	13	K3	CO2
13.	a)	Write notes on: i. Aqueous two-phase extractions. ii. Reverse osmosis.	8 5	K2	CO3
	b)	 i. Classify the different methods of protein precipitation and brief each. ii. Discuss the various factors that affect the membrane separation processes. 	9	K3	CO3
14.	a)	Explain the basic principles and applications of: i. Affinity chromatography. ii. Reverse phase chromatography.	6 7	K2	CO4
	b)	(OR) Explain the principle involved in gel permeation chromatography and write a note on applications in Separating the biomolecules.	13	K2	CO4
15.	a)	With a suitable diagram explain the principle, theory and application of crystallization. (OR)	13	K2	CO5
	b)	With a neat labelled sketch explain the freeze-drying process.	13	K2	CO5
		PART – C			
0.1	Io.	(1 x	15 = 15		•
Q.N 16.		Questions In the fermentation industry the product has been carried out by disc bowl centrifuge is available for the separation of cells with settling velocity (V_t) of 1 x 10 ⁻⁴ cm/sec. The centrifuge has 100 discs with an angle of 40°, an outer radius of 16.8 cm and inner radius of 5.2 cm. The centrifuge is operated at 6,000 r.p.m.		KL K5	
		Estimate the volumetric capacity. (OR)			
	b)	 i. Pretreatment of filtration broth is necessary before filtration. Justify. ii. Write a case study on the bio separation process needed for the recovery of recombinant protein with a neat flowsheet. 	10	K6	CO1

		_	 _	_	_			
Reg.No.:								

VIVEKANANDHA COLLEGE OF ENGINEERING FOR WOMEN UTONOMOUS INSTITUTION AFFILIATED TO ANNA UNIVERSITY, CHENNAI] layampalayam – 637 205, Tiruchengode, Namakkal Dt., Tamil Nadu.

Question Paper Code: 9002

B.E. / B.Tech. DEGREE END-SEMESTER EXAMINATIONS - NOV. / DEC. 2023

Fifth Semester

Biotechnology

U19BT513 - COMPUTATIONAL BIOLOGY

(Regulation 2019)

Time: Three Hours

Maximum: 100 Marks

Answer ALL the questions

Knowledge Levels	K1 – Remembering	K3 – Applying	K5 - Evaluating
(KL)	K2 – Understanding	K4 – Analyzing	K6 - Creating

PART - A

	(10	x = 20	Marks	s)
Q.1	No. Questions	Marks	KL	CO
1.	Write a note on the differences between the Local Alignment and Global Alignment.	2	K1	CO1
2.	What is BLAST? What are the types of BLAST?	2	K1	CO1
3.	Define DNA computing.	2	K1	CO2
4.	What are Artificial Neural Networks?	2	K2	CO2
5.	Write a note on ultrametric trees.	2	K2	CO3
6.	What is a cladogram and a phylogram?	2	K2	CO3
7.	Define Protein structure classification.	2	K2	CO4
8.	Define abinitio approaches of protein structure modeling.	2	K2	CO4
9.	What is Molecular dynamics simulation?	2	K3	CO5
10). What is Peptide Mass Fingerprinting?	2	K3	CO5

PART - B

 $(5 \times 13 = 65 \text{ Marks})$

Q.No. Questions Marks KL CO

11. a) What are biological databases? What are the major 6+7 K2 CO1
classifications of the databases and elaborate about various
biological databases with their applications?

		(OR)			
	b)	What is Multiple Sequence Algorithm? Write a note on various algorithms used in MSA and give a brief account on the applications of MSA?	5+8	K1	COI
12.	a)	What is HMM? How is it used in gene prediction and protein secondary structure identification?	5+8	K3	CO2
		(OR)			
	b)	Write a detailed note on the applications of Machine Learning in Bioinformatics.	13	K3	CO2
13.	a)	What is evolutionary distance-based methods for constructing phylogenetic tree? Explain in detail about various methods in constructing a phylogenetic tree.	6+7	K3	CO3
		(OR)			
	b)	List out the steps involved in phylogenetic tree construction and discuss with a character-based method.	6+7	K3	CO3
14.	a)	Write a detailed account of various methods of predicting protein secondary structures? (OR)	13	K3	CO4
	b)		5+8	K2	CO4
15.	a)	Explain Next Generation Sequencing along with the basic workflow / steps involved. Elaborate various sequencing platforms currently available. (OR)	6+7	K4	CO5
	b)	What is microarray technology? Explain about microarray data analysis.	6+7	K4	CO5
		DART			
		PART – C	$(1 \times 15 =$	15 Ma	rks)
Q.N	No.	Questions	Marks		
16.	a)	Compare and Contrast Genomics and Proteomics. Discuss detail the different types of genomics and proteomics wapplications.	in 7+8	K3	
	1.	(OR)			
	b)	Discuss in detail about the Ramachandran plot and involvement in validation of protein model structure with example.	its 8+7 an	K3	3 CO4

Reg.No.:			

[AUTONOMOUS INSTITUTION AFFILIATED TO ANNA UNIVERSITY, CHENNAI] Elayampalayam $-637\ 205$, Tiruchengode, Namakkal Dt., Tamil Nadu.

Question Paper Code: 9005

B.E. / B.Tech. DEGREE END-SEMESTER EXAMINATIONS - NOV. / DEC. 2023

Fifth Semester

Biotechnology

U19BT515 - IMMUNOLOGY AND IMMUNOTECHNOLOGY

(Regulation 2019)

Time: Three Hours

Maximum: 100 Marks

Answer ALL the questions

Knowledge Levels	K1 – Remembering	K3 – Applying	K5 - Evaluating
(KL)	K2 – Understanding	K4 – Analyzing	K6 - Creating

PART - A

		$(10 \times 2 = 20 \text{ N})$	Marks))
Q.No.	Questions	Marks	KL	CO
1.	Name TWO major cells involved in Cell-Mediate Immunity.	2	K1	CO1
2.	What are regulatory T cells?	2	K1	CO1
3.	Describe- Plasma cells.	2	K1	CO2
4.	What is the major function of the Complement system?	_ 2	K2	CO2
5.	Name two antigen-presenting cells.	2	K1	CO3
6.	What is phagocytosis?	2	K2	CO3
7.	Explain the Type 1 hypersensitivity reaction.	2	K2	CO4
8.	Name two mAbs used as anticancer drugs.	2	K1	CO4
9.	Describe the use of ELISA in diagnosis of viral infections.	2	K3	CO5
10.	Write the uses of confocal microscopy in cancer diagnosis.	2	K3	CO5

PART-B

Q.No. Questions (5 x 13 = 65 Marks)

Questions Marks KL CO

11. a) Draw the structure of a lymph node and explain how lymph 13 K1 CO1 nodes are involved in Cell-mediate immunity.

	b)		are antigens? How does their chemical nature affect the ne response?	13	K2	CO1
12.	a)		a note on the development, differentiation, and ration of B cells.	13	K2	CO2
			(OR)			
	b)		the Structure of immunoglobulin and explain its critical ons in humoral immunity.	13	K2	CO2
13.	a)		a note on antigen processing and presentation in the class I pathway.	13	K2	CO3
			(OR)			
	b)	i.	Explain- T cell activation.	5	K1	CO3
		ii.	How activated T cells regulate immunity.	8	K2	
14.	a)		a detailed note on immunology involved in the rejection ransplanted kidney.	13	K4	CO4
			(OR)			
	b)	i. ii.	Define- Autoimmune diseases and list some examples. Explain the mechanism of development.	5 8	K1 K3	CO4
15.	a)	Expla diagra	in the development of monoclonal antibodies with a flow	13	K3	CO5
5		Ü	(OR)			
	b)	i.	Write a detailed note on inactivated vaccines.	8	K2	CO5
		ii.	Explain its use with suitable examples.	5	K3	
			PART – C			
				15 = 15		
Q.N			Questions	Marks		
16.	a)	i.	Describe methods to develop RNA vaccines against COVID-19.		K3	CO5
		ii.	Explain how the RNA vaccines will develop immunity against COVID-19. (OR)	7	K3	CO5
	b)	i.	Explain the methods involved in the production of monoclonal antibodies used for the treatment of breast cancer.		K4	CO4
		ii.	How cancers can be cured with the help of monoclonal antibodies. Explain with suitable examples.	7	K5	CO4

	 	 -	
Reg.No.:			

[AUTONOMOUS INSTITUTION AFFILIATED TO ANNA UNIVERSITY, CHENNAI] Elayampalayam – 637 205, Tiruchengode, Namakkal Dt., Tamil Nadu.

Question Paper Code: 9012

B.E. / B.Tech. DEGREE END-SEMESTER EXAMINATIONS - NOV. / DEC. 2023

Fifth Semester

Biotechnology

U19BT516 - HEAT & MASS TRANSFER

(Regulation 2019)

Time: Three Hours

Maximum: 100 Marks

Answer ALL the questions

Knowledge Levels	K1 – Remembering	K3 – Applying	K5 – Evaluating
(KL)	K2 – Understanding	K4 – Analyzing	K6 – Creating

PART – A

	TAKI -A	10 2 1	20 1/2	1
	`	$10 \times 2 = 2$		-
Q.No.	Questions	Marks	KL	CO
1.	Process of heat transfer can be explained with the help of Temperature and heat. Justify the statement.	2	K2	CO1
2.	Write the principle behind natural convection with an example.	2	K2	CO1
3.	Write the classification of heat exchangers based on its contact mode.	2	K1	CO2
4.	List the applications of heat exchanger in any two bioprocess industries.	2	K1	CO2
5.	Define diffusivity in mass transfer and its significance.	2	K1	CO3
6.	How do the mass transfer coefficient vary with diffusivity as per penetration and surface renewal theory?	2	K2	CO3
7.	How will you relate the packed height and theoretical plates?	2	K1	CO4
8.	If the two phases of liquids have comparable density and viscosities are high, how does it affect extraction?	2	K2	CO4
9.	At 760 mm of Hg, the boiling point of benzene and toluene is 80.1 and 110.6°C. At temperature 85°C, the vapor pressure of benzene and toluene is 877 mm Hg, and 345 mm Hg respectively. Calculate the mole fraction of the more volatile component at 85°C.		K3	CO5
10.	Write the application of adsorption in bioprocess industries.	2	K2	CO5

PART - B

		(5 x	13 = 65		s)
Q.N	lo.	Questions		Marks	KL	CO
11.	a)	Consider a composite wall consisting of four layers of materials 1, 3 and 4 having thickness L ₁ , L ₂ , L ₃ and L ₄ with thermal conductivit of k ₁ , k ₂ , k ₃ and k ₄ respectively. The outer temperature of the wall material 1 and 4 are T ₁ and T ₂ respectively. Obtain the expression: (i) Temperature drop, (ii) the rate of heat transfer (iii) Express the with electrical analogue. State your assumptions clearly. (OR)	ies of for	13	K3	CO1
	b)	Water is flowing through a tube of 16 mm outer diameter & 13. mm inner diameter with length of 5 m at a velocity of 3 m/s. T temperature of the tube is 24°C and the water enters at 80°C a leaves at 36°C. Using Dittus-Boelter equation and Sieder-Ta Equation, calculate heat transfer coefficient. The properties of water a average temperature is: $\rho = 984.1 \text{ kg/m} \cdot \text{Cp} = 4.178 \text{ kJ/kg}$ $\mu = 485 \times 10^{-6} \text{ Pa}$. S, $k = 0.657 \text{ W/m}$ K. Calculate the heat transfer ealso.	The and ate ater K,	13	К3	COI
12.	a)	How will you conduct the pool boiling experiment? Explain to phenomenon of this using boiling curve. (OR)	the	13	K3	CO2
	b)	5 Tons per hour of solution having solute concentration 1 wt % is at 30°C into the evaporator to concentrate the solution to 2.5 wt. The saturated steam is supplied at steam pressure 1.43 bar sheating. The evaporator operates at 1 atm pressure. Assume to overall heat transfer coefficient as 2750 W/m² K. Calculate the arrof the evaporator. If the evaporator pressure is reduced to 40 kl what will be the change in area?	%. for the rea	13	K3	CO2
13.	a)	In a biochemical process industry, 50 litres of fluid is spilled over level of surface area of 8 m ² . The air temperature is 298 K. The diffusivity of the fluid is 0.65 m ² /h. Evaporation took place through a film of air of 2 m thickness. Vapor pressure of fluid is 76 mm that 298 K. Take the density of the fluid is 720 kg/m ³ and the molecular weight is 200 kg per kgmole. Estimate the time required for the fluid to evaporate into the stagnant air above the surface of the liquid.	The igh Hg ilar	13	K4	CO3
	b)	Write short notes on:				
	~)	i. Two film theory.		5	K2	CO3
		ii. Comparison of parallel and counter current contactors mass transfer operation.	for	4		
		iii. Draw a schematic of tray contactors and mark components.	its	4		

14. a) A mixture of air and acetone vapor containing 85% air by volume is stripped of 95% of its acetone content with a stream of water in a bubble cap column operating at 298 K and 1 atm. An overall plate efficiency of 30% can be assumed. If 1.25 times the minimum liquid rate is used. Find the actual number of plates required. Equilibrium Data:

Mole % of acetone in liquid	3.33	7.2	11.7	17.10
Partial pressure of acetone in gas (mm Hg)	3	29.6	61.8	103

(OR)

b) 1 Ton per hour of water – dioxane solution containing 18% dioxane is to be continuously extracted in counter current manner with benzene at 298 K to recover 90% dioxane. Water and Phenol are essentially insoluble and the equilibrium distribution of dioxane between them is as follows:

Wt % of dioxane in water	5.1	18.9	25.2
Wt % of dioxane in phenol	5.2	22.5	32

Determine the number of stages required, if the solvent rate is 1.5 times the minimum and pure benzene is used in the process.

- 15. a) i. Explain T-x-y diagram of (i) normal binary mixture (ii) low boiling azeotrope, (iii) high boiling azeotrope
 - boiling azeotrope, (iii) high boiling azeotrope
 ii. From first principles of vapor liquid equilibria, prove that 7 K3

$$x = \frac{y}{y + \alpha(1 - y)}$$

where x and y are mole fraction of a component in liquid and vapor phase and α is relative volatility of the component.

(OR)

b) Explain the variation of the concentration of adsorbate in the fixed bed adsorption with neat diagram. Also explain for (i) narrow and (ii) wide mass transfer zone.

13

13

13

K4

K4

K1

K3

CO₅

CO₄

CO₅

CO₄

PART - C

 $(1 \times 15 = 15 \text{ Marks})$ Q.No. Marks KL Questions CO 15 K4

CO₂

15

K4

CO₃

16. a) Ammonia gas flows on shell side of a tubular heat exchanger at the rate of 750 m³/hr at 10 atm g. It is to be cooled from 195°C and 35°C using water. Water enters at 2 atm g with velocity of 2.44 m/s and at a temperature of 29°C and leaves at 35°C. The tube dimensions of the exchanger are as follows: Copper tubes of length : 5 m. ID: 1.575 cm, OD: 1.9 cm, arranged in tri angular pitch of 2.48 cm. Baffle spacing: 30.48 cm. Shell side cross flow area: 0.0362 m², Specific heat of NH₃ gas: 0.53 cal/gm °C, Water film co efficient is 31.74x10³ kcal/hr m² °C, Shell side heat transfer coefficient can be estimated using the expression, $h_s = 5.5 \text{ G}^{0.8}$ where G is shell side mass velocity in kg/m² sec. Take LMTD Correction factor as 0.837, Neglect the tube wall resistance.

Calculate the following:

- i. Shell diameter.
- ii. If the dirt factor is 0.0014 m² K/W, what is the Overall heat transfer coefficient,
- iii. The number of tubes and passes.

(OR)

b) Sulphur dioxide is absorbed from air using water at a point in the equipment. The gas contained 10% SO₂ by volume and was in contact with the solvent containing 0.4% SO₂. The overall mass transfer coefficient based concentration on gas $K_g = 7.36 \times 10^{-5} \%$ kmol/m² sec atm. Of the total resistance, 50% lies in the gas phase and remaining in the liquid phase. The temperature was 323 K and total pressure was 1 atm. Density of solvent: 990 kg/m³

Calculate

- the overall coefficient based on liquid concentration, i.
- ii. the interphase composition and
- iii. the mass flux

Equilibrium Data:

kg of SO ₂ per kg of solvent	0.2	0.3	0.5	0.7
Partial pressure of SO ₂ in mm Hg	2.9	46	83	119

Reg.No.:	
----------	--

[AUTONOMOUS INSTITUTION AFFILIATED TO ANNA UNIVERSITY, CHENNAI] Elayampalayam $-637\ 205$, Tiruchengode, Namakkal Dt., Tamil Nadu.

Question Paper Code: 9014

B.E. / B.Tech. DEGREE END-SEMESTER EXAMINATIONS - NOV. / DEC. 2023

Fifth Semester

Biotechnology

U19BTV51 - FERMENTATION TECHNOLOGY

(Regulation 2019)

Time: Three Hours

Maximum: 100 Marks

Answer ALL the questions

Knowledge Levels	K1 – Remembering	K3 – Applying	K5 - Evaluating
(KL)	K2 – Understanding	K4 – Analyzing	K6 - Creating

PART - A

	$(10 \times 2 = 20 \text{ Marks})$				
Q.No.	Questions	Marks	KL	CO	
1.	What role does aeration play in the fermentation process?	2	K1	CO1	
2.	In what scenario, the continuous fermentation is preferred over the batch fermentation?	2	K1	CO1	
3.	List out the various probes used for monitoring parameters during fermentation. Provide examples of parameters that can be measured using probes and their significance.	2	K2	CO2	
4.	State the importance of real-time monitoring and data logging in fermentation processes.	2	K2	CO2	
5.	Explain the consequences of inadequate air sterilization in pharmaceutical manufacturing and biotechnology laboratories.	2	K2	CO3	
6.	Differentiate between pasteurization and sterilization.	2	K2	CO3	
7.	Differentiate between primary and secondary recovery methods in product isolation.	2	K3	CO4	
8.	How does charge and mass affect the separation of molecules in electrophoresis?	2	К3	CO4	
9.	Enumerate two key differences between beer and wine fermentation.	2	K3	CO5	
10.	What is the role of genetically modified microorganisms in the production of microbial fungicides?	2	K3	CO5	

PART – B

			<i>(5 12 -</i>	65 Ma	nl-~\
0.11	r		$(5 \times 13 =$	os ivia KL	_
Q.N		Questions	Marks		CO
11.	a)	i. What are the primary steps involved in the isolation of	7	K1	CO ₁
		microorganisms for industrial fermentation purposes?			
		ii. Discuss the methods used to genetically improve	6		
		strains for enhanced fermentation performance.			
		(OR)			
	b)	Illustrate on the various stages of the fermentation process,	13	K1	CO ₁
		with a specific focus on the composition and the importance of			
		the fermentation medium.			
12.	a)	Discuss the design and construction of body and various parts	13	K2	CO2
12.	u)	of fermentor. Explain role of agitator and baffels and their	15	112	002
		placement within the vessel.			
		(OR)			
	b)	Describe the design and working principle of an Airlift	13	K2	CO2
		fermentor. How does it differ from other types of fermentors?			
		Highlight the key differences in their design and operation.			
10			10	770	002
13.	a)	Describe the design of a continuous sterilization process for	13	K3	CO3
		media and discuss its advantages over batch sterilization.	9		
	b)	i. Discuss and derive the kinetics for batch sterilization.	5	K3	CO3
	U)	i. Explain the concept of the thermal death time and how	8	KJ	COS
		time influences the effectiveness of sterilization?	O		
		time influences the effectiveness of stermization:			
14.	a)	i. Describe the principle behind aqueous two-phase	5	K3	CO4
		separation and explain phase diagram in detail.			
		ii. Explain ATPS application in the field of bioprocessing.	8		
		(OR)			
	b)	i. Describe the concept of whole broth processing and its	5	K3	CO4
		advantages in certain bioprocessing applications.			
		ii. Highlight the challenges associated with product	8		
		isolation and strategies to overcome them.			
15.	a)	Write note on HOPS used for beer production and processes	13	K3	CO5
)	involved in brewhouse with a neat flow chart.			
		(OR)			
	b)	Describe the role of microorganisms in the development and	13	K3	CO5
	,	application of microbial fungicides and pesticides.			

PART – C

	(1×1)	5 = 15 M	arks)	
Q.No.	Questions	Marks	KL	CO
16. a)	i. Explore the challenges and considerations involved in scaling up a batch sterilization process from laboratory-scale to industrial-scale production.	8	K4	CO3
	ii. Discuss the critical factors that must be addressed to maintain product quality and safety during the scale-up process. (OR)	7		
b)	Investigate the integration of solvent extraction, chromatography, and electrophoresis methods can be effectively utilized within a bioprocessing framework to attain the isolation of high-purity	15	K4	CO4
	products.			

2.7

Reg.No.:						
iteg.ivo						

[AUTONOMOUS INSTITUTION AFFILIATED TO ANNA UNIVERSITY, CHENNAI] Elayampalayam $-637\ 205$, Tiruchengode, Namakkal Dt., Tamil Nadu.

Question Paper Code: 9013

B.E. / B.Tech. DEGREE END-SEMESTER EXAMINATIONS – NOV. / DEC. 2023

Fifth Semester

Biotechnology

U19BTV11 - WASTE WATER TREATMENT

(Regulation 2019)

Time: Three Hours

Maximum: 100 Marks

 $(5 \times 13 = 65 \text{ Marks})$

Answer ALL the questions

	K1 – Remembering	K3 – Applying	K5 - Evaluating
(KL)	K2 – Understanding	K4 – Analyzing	K6 - Creating

PART - A

		$(10 \times 2 = 20 \text{ Marks})$				
Q.No.	Questions	Marks	KL	CO		
1.	Highlight the standards for potable water.	2	K1	CO1		
2.	Summarize few physical process for water purification.	2	K2	CO1		
3.	List the components of industrial waste water.	2	K1	CO2		
4.	State the permissible limits for pollutants in air.	2	K2	CO2		
5.	Discuss the methods for iron and manganese removal from water	r. 2	K1	CO3		
6.	Why the need for desalination of drinking water.	2	K2	CO3		
7.	Show the mechanism of lagoons for waste water treatment.	2	K1	CO4		
8.	Illustrate trickling filter water treatment process.	2	K2	CO4		
9.	Mention the application of steam stripping.	2	K1	CO5		
10.	List few advanced technologies used for waste water treatment.	2	K1	CO5		
	PAPT - P					

PART – B

Q.N	No.	Questions	Marks	KL	CO	
11.	a)	Describe the physical, chemical and biological parameters for		K2	CO1	
		drinking water.				
		(OR)		10		
	b)	Explain the various chemical and biological process used for	13	K2	CO1	
		water purification.				

12.	a)	i.	Describe the types, importance and benefits of environmental auditing.	8	K2	CO2
		ii.	Outline the regulations and permits for solid waste. (OR)	5	K2	CO2
	b)		arize the salient features of national environmental act and occupational safety and health act.	13	K2	CO2
13.	a)	i.	Elaborate the mechanism of activated carbon used for color removal.	8	K3	CO3
		ii.	Brief the application of Ion exchange methods in waste water treatment. (OR)	5	K3	
	b)		s the harmful effects of fluorine in drinking water and the different methods used for defluorination.	13	K3	CO3
14.	a)	i.	Explain the process of activated sludge for waste water treatment.	8	K2	CO4
		ii.	Illustrate the working of rotating biological contactors. (OR)	5	K2	
	b)	•	n the mechanism and working of UASB reactors in water treatment.	13	K2	CO4
15.	a)	i.	Describe the merits and demerits of advanced oxidation process.	8	K2	CO5
		ii.	Brief the mechanism of chemical precipitation method for waste water treatment. (OR)	5	K2	CO5
	b)	i.	Explain the need for electrolysis in water treatment and its applications.	8	K2	CO5
		ii.	Describe the methods followed for safe disposal of sludge.	5	K2	CO5
			PART – C			
0.1	т		· ·	x 15 = 1		· · · · · ·
Q.N		Euroloit	Questions	Marks		CO
16.	a)	-	the different biological treatment methods for waste water nt. Describe how these methods are effective than physical	15	K5	CO4
			emical process with help of a case study considering any al waste water.			
	L	T :-4 41	(OR)	1.5	1// 5	COS
	b)	Outline method	the source of heavy metals in waste water and explain the sused for removal and disposal. Emphasize on fewed technologies for metal removal.	15	K5	CO5
		aa rance	de technologies for metal femoval.			

		1		-		
Reg.No.:						

[AUTONOMOUS INSTITUTION AFFILIATED TO ANNA UNIVERSITY, CHENNAI] Elayampalayam $-637\ 205$, Tiruchengode, Namakkal Dt., Tamil Nadu.

Question Paper Code: 9005

B.E. / B.Tech. DEGREE END-SEMESTER EXAMINATIONS - NOV. / DEC. 2023

Fifth Semester

Biotechnology

U19BT515 – IMMUNOLOGY AND IMMUNOTECHNOLOGY

(Regulation 2019)

Time: Three Hours

Maximum: 100 Marks

Answer ALL the questions

Knowledge Levels	K1 – Remembering	K3 – Applying	K5 - Evaluating
(KL)	K2 – Understanding	K4 – Analyzing	K6 - Creating

PART - A

		$(10 \times 2 = 20 \text{ Marks})$				
Q.No.	Questions	Marks	KL	CO		
1.	Name TWO major cells involved in Cell-Mediate Immunity.	2	K1	CO1		
2.	What are regulatory T cells?	2	K1	CO1		
3.	Describe- Plasma cells.	2	K1	CO2		
4.	What is the major function of the Complement system?	2	K2	CO2		
5.	Name two antigen-presenting cells.	2	K1	CO3		
6.	What is phagocytosis?	2	K2	CO3		
7.	Explain the Type 1 hypersensitivity reaction.	2	K2	CO4		
8.	Name two mAbs used as anticancer drugs.	2	K1	CO4		
9.	Describe the use of ELISA in diagnosis of viral infections.	2	K3	CO5		
10.	Write the uses of confocal microscopy in cancer diagnosis.	2	K3	CO5		

PART-B

Q.No. Questions (5 x 13 = 65 Marks)

Questions Marks KL CO

11. a) Draw the structure of a lymph node and explain how lymph 13 K1 CO1 nodes are involved in Cell-mediate immunity.

	b)		are antigens? How does their chemical nature affect the ne response?	13	K2	CO1
12.	a)		a note on the development, differentiation, and ation of B cells.	13	K2	CO2
			(OR)			
	b)		the Structure of immunoglobulin and explain its critical ons in humoral immunity.	13	K2	CO2
13.	a)		a note on antigen processing and presentation in the class I pathway.	13	K2	CO3
			(OR)			
	b)	i.	Explain- T cell activation.	5	K1	CO3
		ii.	How activated T cells regulate immunity.	8	K2	
14.	a)		a detailed note on immunology involved in the rejection ansplanted kidney.	13	K4	CO4
			(OR)			
	b)	i. ii.	Define- Autoimmune diseases and list some examples. Explain the mechanism of development.	5 8	K1 K3	CO4
15.	a)	Expla diagra	F	13	K3	CO5
			(OR)			
	b)	i.	Write a detailed note on inactivated vaccines.	8	K2	CO5
(*)	ĺ	ii.	Explain its use with suitable examples.	5	K3	
			PART – C			
				5 = 15	,	
Q.N			Questions	Marks		
16.	a)	i.	Describe methods to develop RNA vaccines against COVID-19.	8	К3	CO5
		ii.	Explain how the RNA vaccines will develop immunity against COVID-19. (OR)	7	K3	CO5
	b)	i.	Explain the methods involved in the production of monoclonal antibodies used for the treatment of breast cancer.	8	K4	CO4
		ii.	How cancers can be cured with the help of monoclonal antibodies. Explain with suitable examples.	7	K5	CO4

Reg.No.:												
----------	--	--	--	--	--	--	--	--	--	--	--	--

[AUTONOMOUS INSTITUTION AFFILIATED TO ANNA UNIVERSITY, CHENNAI] Elayampalayam $-637\ 205$, Tiruchengode, Namakkal Dt., Tamil Nadu.

Question Paper Code: 9011

B.E. / B.Tech. DEGREE END-SEMESTER EXAMINATIONS - NOV. / DEC. 2023

Fifth Semester

Biotechnology

U19BTV44 – FOOD NUTRITION & HEALTH SCIENCES

(Regulation 2019)

Time: Three Hours

Maximum: 100 Marks

Answer ALL the questions

Knowledge Levels	K1 – Remembering	K3 – Applying	K5 - Evaluating
(KL)	K2 – Understanding	K4 – Analyzing	K6 - Creating

PART - A

		$(10 \times 2 = 20)$	Marks	i)
Q.No.	Questions	Marks	KL	CO
1.	Define malnutrition.	2	K1	CO1
2.	What is the recommended dietary intake for women?	2	K2	COI
3.	List the factors affecting basal metabolic rate.	2	K1	CO2
4.	Why is fibre important in the diet?	2	K2	CO2
5.	What are the benefits of taking folic acid during pregnancy?	2	K1	CO3
6.	How does the physiological change affect the nutritional intake Senior Citizens?	of 2	K3	CO3
7	Define perishable foods and give an example.	2	K2	CO4
8.	Mention the flavoring substances used in foods.	2	K1	CO4
9.	Cite the general considerations for a healthy gut.	2	Kl	CO5
10.	Differentiate soft diet from normal diet.	2	K2	CO5

PART - B

Q.No. Questions (5 x 13 = 65 Marks)

Questions Marks KL CO

11. a) With the neat diagram explain the steps involved in the digestion process.

	b)	i.	Classify five classes of food groups. Explain each with an example.	7	K1	CO1
		ii.	Write a short note on the nutrition scenario in India.	6		
12.	a)	i.	List the nutrients, which supply energy. Discuss the factors which affect the energy needs of the body.	6	K2	CO2
		ii.	Summarise the function of essential fatty acids and their effects in deficiency. (OR)	7		
	b)	i.	How is acid-base balance regulated in the body? Explain.	8	K1	CO2
		ii.	Write down the functions of water, and potassium in the body.	5		
13.	a)		does development happen at the onset of puberty? Why utrition need to change at this stage? (OR)	13	K2	CO3
	b)	i.	How do the complications of pregnancy impact the nutritional status?	8	K2	CO3
		ii.	Analyse the factors, which need attention to ensure successful lactation.	5		
14.	a)		a detailed account on foodborne diseases at various of food processing. (OR)	13	K1	CO4
	b)		by the food adulterants with an example and detail the ds to identify the same.	13	K2	CO4
15.	a)	i. ii.	What is a therapeutic diet? Classify it. Recall the function of IDA.	8 5	K 1	CO5
			(OR)			
	b)	Summa	arize the dietary considerations for an infected person.	13	K2	CO5
			PART – C			
				$(1 \times 15 =$	= 15 M	arks)
Q.N	lo.		Questions	Marks	KL	CO
16.	a)		diagrammatic representation of the food pyramid and ht its role as a guide in menu planning. (OR)	15	K3	CO2
	b)	How do	you plan a diet for an underweight person?	15	K3	CO5

Reg.No.:		

[AUTONOMOUS INSTITUTION AFFILIATED TO ANNA UNIVERSITY, CHENNAI] Elayampalayam – 637 205, Tiruchengode, Namakkal Dt., Tamil Nadu.

Question Paper Code: 9010

B.E. / B.Tech. DEGREE END-SEMESTER EXAMINATIONS - NOV. / DEC. 2023

Seventh Semester

Biotechnology

U19BTE12 - NANOBIOTECHNOLOGY

(Regulation 2019)

Time: Three Hours

Maximum: 100 Marks

Answer ALL the questions

Knowledge Levels	K1 – Remembering	K3 – Applying	K5 - Evaluating
(KL)	K2 – Understanding	K4 – Analyzing	K6 - Creating

PART - A

		$(10 \times 2 =$	20 Ma	arks)
Q.No.	Questions	Marks	KL	CO
1.	State the importance of Nano-dimension.	2 -	K2	CO1
2.	What are the Surface effects of nano-material?	2	K2	CO1
3.	Define Nanostructures. Give examples.	2	K1	CO2
4.	Compare and contrast green synthesis and chemical synthesis of nanoparticles.	2	K2	CO2
5.	Write the use of DNA molecules in nanomechanics.	2	K1	CO3
6.	How nanoparticles are used in biosensors?	2	K2	CO3
7.	What is the structure and function of the extracellular matrix?	2	K1	CO4
8.	Indicate is the concept of nano artificial cells.	2	K2	CO4
9.	Mention the cytotoxic and genotoxic effects of nanomaterial.	2	K1	CO5
10.	What is nanotoxicology? How it affects the health of living organism?	2	K2	CO5

PART - B

Q.No. Questions (5 x 13 = 65 Marks)

Questions Marks KL CO

11. a) Explain in detail about Top down and bottom-up approach for the 13 K3 CO1 synthesis of nanomaterials.

b)	Classify the various characterization techniques of nanomaterials and explain each.	13	К3	CO1
a)	different types.	7	K2	CO2
	ii. Gas condensation processing (OR)	6	112	002
b)	Schematically describe the synthesis of nanomaterials by biological methods.	13	K2	CO2
a)	i. What is DNA origami? How DNA can be used as structural material?	7	K2	CO3
	ii. Exemplify the role of genetic engineering in DNA nanotechnology.	6		
	(OR)			
b)	i. How to construct bio nanomachines? Explain with a suitable example.	6	K2	CO3
	ii. Write short notes on Carbon nanotube and its bio-applications.	7		
a)	Describe the importance of scaffolds in tissue engineering.	13	K2	CO4
/				
1.				
b)			1//0	004
			K2	CO4
	ii. Nanotechnology in organ printing	6		
a)	Parasphrase the importance of nanobiotechnology in diagnosis and treatment of following diseases			
	i. Cancer	7	K2	CO5
	ii. Respiratory diseases	6		
	(OR)			
h)				
U)		7	K2	CO5
		· ·	KZ	COS
	n. Optical detection	O		
	PART – C	,		
		5 = 15 N	(farks	
No.			KL	CO
a)	Nanobiotechnology is playing an important role in the field of	15	K4	CO5
,	drug delivery. Justify your statement with suitable examples.			
b)	Outline the various applications of nanotechnology in agriculture.	15	K3	CO5
	a) b) a) b) vo. a)	and explain each. a) Illustrate the following methods to prepare Nano particles of different types. i. Sol-gel processing ii. Gas condensation processing (OR) b) Schematically describe the synthesis of nanomaterials by biological methods. a) i. What is DNA origami? How DNA can be used as structural material? ii. Exemplify the role of genetic engineering in DNA nanotechnology. (OR) b) i. How to construct bio nanomachines? Explain with a suitable example. ii. Write short notes on Carbon nanotube and its bioapplications. a) Describe the importance of scaffolds in tissue engineering. (OR) b) Write short notes on the following: i. Electrospinning ii. Nanotechnology in organ printing a) Parasphrase the importance of nanobiotechnology in diagnosis and treatment of following diseases i. Cancer ii. Respiratory diseases (OR) b) Justify the role of nanotechnology in the following areas: i. Nanosurgery ii. Optical detection PART - C (1 x 15) No. Questions a) Nanobiotechnology is playing an important role in the field of drug delivery. Justify your statement with suitable examples. (OR)	and explain each. a) Illustrate the following methods to prepare Nano particles of different types. i. Sol-gel processing ii. Gas condensation processing (OR) b) Schematically describe the synthesis of nanomaterials by biological methods. a) i. What is DNA origami? How DNA can be used as structural material? ii. Exemplify the role of genetic engineering in DNA nanotechnology. (OR) b) i. How to construct bio nanomachines? Explain with a suitable example. ii. Write short notes on Carbon nanotube and its bioapplications. a) Describe the importance of scaffolds in tissue engineering. (OR) b) Write short notes on the following: i. Electrospinning ii. Nanotechnology in organ printing a) Parasphrase the importance of nanobiotechnology in diagnosis and treatment of following diseases i. Cancer ii. Respiratory diseases (OR) b) Justify the role of nanotechnology in the following areas: i. Nanosurgery ii. Optical detection PART - C (1 x 15 = 15 Marks Marks a) Nanobiotechnology is playing an important role in the field of 15 drug delivery. Justify your statement with suitable examples. (OR)	and explain each. a) Illustrate the following methods to prepare Nano particles of different types. i. Sol-gel processing ii. Gas condensation processing (OR) b) Schematically describe the synthesis of nanomaterials by biological naterial? ii. Exemplify the role of genetic engineering in DNA nanotechnology. (OR) b) i. How to construct bio nanomachines? Explain with a suitable example. ii. Write short notes on Carbon nanotube and its bioapplications. a) Describe the importance of scaffolds in tissue engineering. i) Electrospinning i) R2 (OR) b) Write short notes on the following: i) Electrospinning ii. Nanotechnology in organ printing a) Parasphrase the importance of nanobiotechnology in diagnosis and treatment of following diseases i) Cancer ii. Respiratory diseases i) Cancer iii. Respiratory diseases i) Cancer iii. Respiratory diseases i) Cancer iii. Nanosurgery iii. Optical detection PART - C (1 x 15 = 15 Marks) Marks KL a) Nanobiotechnology is playing an important role in the field of 15 K4 drug delivery. Justify your statement with suitable examples. (OR)

Reg.No.:		
----------	--	--

[AUTONOMOUS INSTITUTION AFFILIATED TO ANNA UNIVERSITY, CHENNAI] Elayampalayam $-637\ 205$, Tiruchengode, Namakkal Dt., Tamil Nadu.

Question Paper Code: 9009

B.E. / B.Tech. DEGREE END-SEMESTER EXAMINATIONS - NOV. / DEC. 2023

Seventh Semester

Biotechnology

U19BTE11 - DAIRY TECHNOLOGY

(Regulation 2019)

Time: Three Hours

Maximum: 100 Marks

Answer ALL the questions

Knowledge Levels	K1 – Remembering	K3 – Applying	K5 - Evaluating
(KL)	K2 – Understanding	K4 – Analyzing	K6 - Creating

PART - A

		$(10 \times 2 = 2)$	u Ma	rks)
Q.No.	Questions	Marks	KL	ĆO
1.	List the major constituents of milk.	2	K1	CO1
2.	Expand MMPO- Mention its function in Indian Milk market.	2	K2	CO1
3.	How milk adulteration with water can be detected?	2	K2	CO2
4.	Differentiate between Homogenized milk and Pasteurized milk.	2	K2	CO2
5.	How does churning cream make butter?	2	K2	CO3
6.	State the principle behind manufacturing of Paneer.	2	K1	CO3
7.	Distinguish between Whey protein and Casein.	2	K2	CO4
8.	Quote any TWO beneficial values of Almond milk and Soya mill	c. 2	K1	CO4
9.	Write a short note on the Milk distribution chain in India.	2	Kl	CO5
10.	Indicate any FOUR commonly used packing materials for miland milk products.	lk 2	K2	CO5

PART - B

			TAKT D			
			(5 x	13 = 65	Marks	s)
Q.No. Questions		Questions	Marks	KL	CO	
11.	a)	i.	Exemplify the physico chemical properties of milk.	10	K2	CO1
		ii.	Figure out the current status of Per Capita Availability of Milk in India.	3	K2	
			(OR)			
	b)	i.	Illustrate the role of microbes in dairy processing.	10	K2	CO1
		ii.	Classify the common systems for collection of milk in India.	3	K2	

12.	a)	i. Schematically expl processing of milk.	ain the working principle of UHT	8	K2	CO2
		,	ole of membrane processes in the k proteins. (OR)	5	K3	
	b)	i. Categorize the differential milk and describe an	rent non thermal methods of processing	10	K2	CO2
			e suitable methods for preventing milk	3	K3	
13.	a)	i. Demonstrate the ma with a flow diagram.	anufacturing process of Cheddar cheese	8	K2	CO3
			fermentation in yoghurt production and	5	K2	
			(OR)			
	b)	With neat labeled sketche equipments employed in dry	s, portray the different manufacturing ving of milk.	13	K2	CO3
14.	a)	What is meant by Skimm process of Skim milk. Add i	ned milk? Illustrate the manufacturing ts composition.	13	K2	CO4
			(OR)			
	b)	What is Vegan milk? manufacturing vegan milk v	Explain the generalized method of with a clear flow chart.	13	K2	CO4
15.	a)		and techniques involved in aseptic ucts, with neat sketch. Brief on its	13	K2	CO5
			(OR)			
	b)	Compare and contra waste packaging mat	ast the different methods of disposing terials.	8	K2	CO5
			s human health benefits from various	5	K2	
		dairy products.				
			PART – C			
				5 = 15 N	Marks)	
Q.N	Vo.		Questions	Marks	KL	CO
16.		With a neat flow sheet, exp	plain in detail the steps involved in the	15	K4	CO3
			ocess of ice cream in industries. (OR)			
	b)	With an example case study, the area of packaged dairy pr	, discuss the technological innovations in	15	K5	CO5